train.py 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155
  1. import os
  2. # 设置Hugging Face国内镜像源 (必须在import transformers之前设置)
  3. os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
  4. os.environ['HF_HUB_ENABLE_HF_TRANSFER'] = '1'
  5. # 强制离线模式 - 确保从本地加载模型而不联网
  6. os.environ['TRANSFORMERS_OFFLINE'] = '1'
  7. os.environ['HF_DATASETS_OFFLINE'] = '1'
  8. # 新增:设置本地WandB服务地址(可选但推荐)
  9. os.environ['WANDB_BASE_URL'] = 'http://117.72.35.222:8081' # 添加这一行
  10. import wandb
  11. import gc
  12. from tqdm import tqdm
  13. import torch
  14. from torch.utils.data import DataLoader
  15. from torch.nn.utils import clip_grad_norm_
  16. from src.model import load_model, llama_model_path
  17. from src.dataset import load_dataset
  18. from src.utils.evaluate import eval_funcs
  19. from src.utils.config import parse_args_llama
  20. from src.utils.ckpt import _save_checkpoint, _reload_best_model
  21. from src.utils.collate import collate_fn
  22. from src.utils.seed import seed_everything
  23. from src.utils.lr_schedule import adjust_learning_rate
  24. def main(args):
  25. # Step 1: Set up wandb
  26. seed = args.seed
  27. wandb.init(project=f"{args.project}",
  28. name=f"{args.dataset}_{args.model_name}_seed{seed}",
  29. config=args)
  30. seed_everything(seed=args.seed)
  31. print(args)
  32. dataset = load_dataset[args.dataset]()
  33. idx_split = dataset.get_idx_split()
  34. # Step 2: Build Dataset
  35. train_dataset = [dataset[i] for i in idx_split['train']]
  36. val_dataset = [dataset[i] for i in idx_split['val']]
  37. test_dataset = [dataset[i] for i in idx_split['test']]
  38. train_loader = DataLoader(train_dataset, batch_size=args.batch_size, drop_last=True, pin_memory=True, shuffle=True, collate_fn=collate_fn)
  39. val_loader = DataLoader(val_dataset, batch_size=args.batch_size, drop_last=False, pin_memory=True, shuffle=False, collate_fn=collate_fn)
  40. test_loader = DataLoader(test_dataset, batch_size=args.eval_batch_size, drop_last=False, pin_memory=True, shuffle=False, collate_fn=collate_fn)
  41. # Step 3: Build Model
  42. args.llm_model_path = llama_model_path[args.llm_model_name]
  43. model = load_model[args.model_name](graph_type=dataset.graph_type, args=args, init_prompt=dataset.prompt)
  44. # Step 4 Set Optimizer
  45. params = [p for _, p in model.named_parameters() if p.requires_grad]
  46. optimizer = torch.optim.AdamW(
  47. [{'params': params, 'lr': args.lr, 'weight_decay': args.wd}, ],
  48. betas=(0.9, 0.95)
  49. )
  50. trainable_params, all_param = model.print_trainable_params()
  51. print(f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}")
  52. # Step 5. Training
  53. num_training_steps = args.num_epochs * len(train_loader)
  54. progress_bar = tqdm(range(num_training_steps))
  55. best_val_loss = float('inf')
  56. for epoch in range(args.num_epochs):
  57. model.train()
  58. epoch_loss, accum_loss = 0., 0.
  59. for step, batch in enumerate(train_loader):
  60. optimizer.zero_grad()
  61. loss = model(batch)
  62. loss.backward()
  63. clip_grad_norm_(optimizer.param_groups[0]['params'], 0.1)
  64. if (step + 1) % args.grad_steps == 0:
  65. adjust_learning_rate(optimizer.param_groups[0], args.lr, step / len(train_loader) + epoch, args)
  66. optimizer.step()
  67. epoch_loss, accum_loss = epoch_loss + loss.item(), accum_loss + loss.item()
  68. if (step + 1) % args.grad_steps == 0:
  69. lr = optimizer.param_groups[0]["lr"]
  70. wandb.log({'Lr': lr})
  71. wandb.log({'Accum Loss': accum_loss / args.grad_steps})
  72. accum_loss = 0.
  73. progress_bar.update(1)
  74. print(f"Epoch: {epoch}|{args.num_epochs}: Train Loss (Epoch Mean): {epoch_loss / len(train_loader)}")
  75. wandb.log({'Train Loss (Epoch Mean)': epoch_loss / len(train_loader)})
  76. val_loss = 0.
  77. eval_output = []
  78. model.eval()
  79. with torch.no_grad():
  80. for step, batch in enumerate(val_loader):
  81. loss = model(batch)
  82. val_loss += loss.item()
  83. val_loss = val_loss/len(val_loader)
  84. print(f"Epoch: {epoch}|{args.num_epochs}: Val Loss: {val_loss}")
  85. wandb.log({'Val Loss': val_loss})
  86. if val_loss < best_val_loss:
  87. best_val_loss = val_loss
  88. _save_checkpoint(model, optimizer, epoch, args, is_best=True)
  89. best_epoch = epoch
  90. print(f'Epoch {epoch} Val Loss {val_loss} Best Val Loss {best_val_loss} Best Epoch {best_epoch}')
  91. if epoch - best_epoch >= args.patience:
  92. print(f'Early stop at epoch {epoch}')
  93. break
  94. torch.cuda.empty_cache()
  95. torch.cuda.reset_max_memory_allocated()
  96. # Step 5. Evaluating
  97. model = _reload_best_model(model, args)
  98. model.eval()
  99. eval_output = []
  100. progress_bar_test = tqdm(range(len(test_loader)))
  101. for step, batch in enumerate(test_loader):
  102. with torch.no_grad():
  103. output = model.inference(batch)
  104. eval_output.append(output)
  105. progress_bar_test.update(1)
  106. # Step 6. Post-processing & compute metrics
  107. os.makedirs(f'{args.output_dir}/{args.dataset}', exist_ok=True)
  108. path = f'{args.output_dir}/{args.dataset}/model_name_{args.model_name}_llm_model_name_{args.llm_model_name}_llm_frozen_{args.llm_frozen}_max_txt_len_{args.max_txt_len}_max_new_tokens_{args.max_new_tokens}_gnn_model_name_{args.gnn_model_name}_patience_{args.patience}_num_epochs_{args.num_epochs}_seed{seed}.csv'
  109. acc = eval_funcs[args.dataset](eval_output, path)
  110. print(f'Test Acc {acc}')
  111. wandb.log({'Test Acc': acc})
  112. if __name__ == "__main__":
  113. args = parse_args_llama()
  114. main(args)
  115. torch.cuda.empty_cache()
  116. torch.cuda.reset_max_memory_allocated()
  117. gc.collect()